
On integer division

Jean-Marc Bourguet

1 Integer division

The integer division of an integer u, the dividend, by another non nul integer v , the divisor, is
the determination of two integers: the quotient q and the remainder r such that u = qv + r and
|r | < |v |. With this definition, there are two results if v is not a divisor of u. To make the result
unique, one has to impose an additional condition.

Three such conditions are in use. But first a word about the notations used in this document.
u/v is the real division of u by v . When an uniquifying condition is implied by the context, u÷v is
the quotient and u rem v is the remainder of an integer division. When the uniquifying condition
is not important u \ v is the quotient and u mod v is the remainder.

When defining the uniquifying conditions, we’ll also make use the two functions:

sgn x =

−1 x < 0

0 x = 0

1 x > 0

trunc x =

dxe x < 0

0 x = 0

bxc x > 0

1.1 Truncating division

The truncating division can be defined in two equivalent ways: one relating the value of q with
the result of the real division (which explains the name we use), the other binding the sign of r
with the sign of the dividend:

q = trunc
u

v
r = 0∨ sgnr = sgnu

This way of uniquifying the result of the division brings us some properties:

−u ÷−v = u ÷ v

−u ÷ v = u ÷−v =−(u ÷ v)

−u rem v =−(u rem v)

u rem −v = u rem v

That is a lot of symmetries around the value 0; for the quotient, they are the same one that the
real division has. These symmetries implies that 0 is special (for instance, there are 2v−1 integers
giving 0 when divided by v when there are only v such integers for other quotients).

1

1.2 Floor division

Again, two equivalent ways of defining the division:

q =
⌊u

v

⌋
r = 0∨ sgnr = sgn v

The properties we get are:

−u ÷−v = u ÷ v

−u rem −v =−(u rem v)

(u +kv) rem v = u rem v

We loose some of the symmetries around the origin, but now the remainder is periodic and 0 is
now behaving like other numbers.

1.3 Positive remainder division

There is only one condition to define this division:

0 ≤ r

The properties are:

u ÷−v =−(u ÷ v)

u rem −v = u rem v

(u +kv) rem v = u rem v

Again a periodical remainder and less symmetries that for the truncating division.

To illustrate, here are some examples:

truncating floor positive remainder
7÷3 2 2 2

7 rem 3 1 1 1

−7÷3 −2 −3 −3
−7 rem 3 −1 2 2

7÷−3 −2 −3 −2
7 rem −3 1 −2 1

−7÷−3 2 2 3
−7 rem −3 −1 −1 2

Mathematicians tend to define the version they want before using it if it is important. Pro-
grammers often don’t have that luxery and have to make with what the system they use provides
them. It happens that processors and languages seem to have standardized on the floor divi-
sion even if the other two (they differ only for negative dividend, which seems rare) appear to

2

be more in use among the mathematicians. Exceptions exist, some languages even provides two
remainders (the truncating and the floor one).

Going from one version to the other isn’t difficult, but it can be tedious. It is just adding or sub-
stracting one to the quotient, and adding or substracting the divisor to the remainder depending
on the sign of the dividend and the divisor. As an example, here is an algorithm computing the
floor division assuming that the truncating one is available (in practice the most common case):

Algorithm 1 Transforming truncating division in floor division
q ← u ÷ v
r ← u rem v
if uv < 0 then .Doing u < 0 6= v < 0 may be preferable as it will not overflow.

q ← q −1
r ← r + v

end if

2 Long division

In this section, we’ll see how to divide a m +n digit number u whose digits in some base B are
(um+n−1 . . .u1u0) by a n digits number v whose digits are (vn−1 . . . v1v0) using only numbers less
that B 2.

The algorithm we’ll use is the long division, the pencil and paper method by which we have
learned how to do division. We’ll consider that there is an additional digit for u: um+n , currently
its value is 0 and it just helps to take into account to fact that such division sometimes produces
m digits and sometimes m−1; it will be needed in the final version of the algorithm anyway. The
algorithm is thus the following:

Algorithm 2 Generic long division

for j = m . . .0 do

q j ←
⌊

u j+n B n+···+u j+1B+u j

vn−1B n−1+···+v1B+v0

⌋
(u j+n . . .u j+1u j) ← (u j+n . . .u j+1u j)−q j (vn−1 . . . v1v0)

end for

At the end, (qm . . . q1q0) is the quotient and the remainder is (un−1 . . .u1u0).
The only difficulty in applying this algorithm is getting the next digit:

q j =
⌊

u j+nB n +·· ·+u j+1B +u j

vn−1B n−1 +·· ·+ v1B + v0

⌋
for which we known that 0 ≤ q j < B .

Well, it is easy to do it if n = 1:

Algorithm 3 Long division, short divisor

for j = m . . .0 do

q j ←
⌊

u j+1B+u j

v0

⌋
(u j+n . . .u j+1u j) ← (u j+n . . .u j+1u j)−q j v0

end for

3

In the other cases, as we are using numbers less that B 2, the obvious idea is the use

q̂ =
⌊

unB +un−1

vn−1

⌋
(we are temporarily dropping the j indices). Let’s try to find out how near we are from the true
value. First we deduce:

q̂ =
⌊

unB +un−1

vn−1

⌋
=

⌊
unB n +un−1B n−1

vn−1B n−1

⌋
=

⌊
u

vn−1B n−1

⌋
≥

⌊u

v

⌋
≥ q

Then bound out the other direction:

q̂ −q =
⌊

unB n +un−1B n−1

vn−1B n−1

⌋
−q

=
⌊

u

vn−1B n−1

⌋
−q

<
⌊

u

vn−1B n−1

⌋
− u

v
+1

as q =
⌊u

v

⌋
> u

v
−1

< u

vn−1B n−1 − u

v
+1

< u

v

(
v − vn−1B n−1

vn−1B n−1

)
+1

< B
B n−1

vn−1B n−1 +1

< B

vn−1
+1

so if vn−1 ≥ B/2 then 0 ≤ q̂ −q ≤ 2. Knuth [1, section 4.3.1] using

q̂ = max(

⌊
unB n +un−1B n−1

vn−1B n−1

⌋
,B −1)

shows that then vn−1 ≥ bB/2c is sufficient.
In order to tighen our bound on q̂ , let’s try to impose q̂(vn−1B + vn−2) ≤ u j+nB 2 +u j+n−1B +

u j+n−2:

q̂(vn−1B + vn−2) ≤ u j+nB 2 +u j+n−1B +u j+n−2

q̂(vn−1B + vn−2) ≤ (u j+nB +u j+n−1)B +u j+n−2

q̂vn−1B + q̂vn−2 ≤ (q̂vn−1 + r̂)B +u j+n−2

q̂vn−2 ≤ r̂ B +u j+n−2

4

This last condition can be computed without overflow if q̂ < B and r̂ < B (if it isn’t, the condition
is false).

We’ll then have

q̂ −q =
⌊

unB n +un−1B n−1 +un−2B n−2

vn−1B n−1 + vn−2B n−2

⌋
−q

=
⌊

u

vn−1B n−1 + vn−2B n−2

⌋
−q

<
⌊

u

vn−1B n−1 + vn−2B n−2

⌋
− u

v
+1

< u

vn−1B n−1 + vn−2B n−2 − u

v
+1

< u

v

(
v − vn−1B n−1 − vn−2B n−2

vn−1B n−1 + vn−2B n−2

)
+1

< B
B n−2

vn−1B n−1 + vn−2B n−2 +1

< B

vn−1B + vn−2
+1

< 2

If one consider that qv + v −1 can differ of (q +1)v only in the last digit, one see that to be
more precise, one need to take all the digits into account.

Let’s modify our initial algorithm using the above properties. To take advantage of the fact
that if vn−1 ≥ B/2 then 0 ≤ q̂ − q ≤ 2, we’ll multiply both dividend and divisor by bB/(vn−1 +1)c
(the dividend will need the additional digit we have already introduced, the divisor won’t need
another digit, but its first digit will be ≥ bB/2c) and divide the remainder by the same value at the
end. We’ll first use q̂ = b(unB +un−1)/vn−1c then adjust q̂ until q̂ < B ∧ q̂vn−2 ≤ r̂ B +u j+n−2 (the
condition in the algorithm is a little more complicated in order to prevent overflow). Then we are
sure that q̂ is at most one too big, so after having subtracted q̂v from (u j+n . . .u j+1u j) we check if
the result had a borrow and add back v in that case. The result is algorithm 4.

For B even bB/2c = B/2, the refinement loop will be executed at most twice, so unrolling the
loop should be considered in an implementation.

With B odd, it is possible to get q̂ = q +3 (for example 48789 = 8×4889 +4879 and q̂ = 489/4 =
129 = 8+3). But as the additional condition we use to ensure q̂ ≤ q +1 doesn’t depend on vn−1,
unrolling the loop twice would be enough, the add back step will handle final adjustment.

References

[1] Donald E. Knuth. The Art of Computer Programming, Volume 2: Seminumerical Algorithms.
Addison-Wesley Longman, third edition, 1998.

[2] Henry S. Warren, Jr. Hacker’s Delight. Addison-Wesley, 2003.

5

Algorithm 4 Long division, full version

1: First normalize the operand to ensure vn−1 ≥ bB/2c.
2: d ← B \(vn−1 +1)
3: if d > 1 then
4: (vn−1 . . . v1v0) ← d(un−1 . . .u1u0)
5: (um+n . . .u1u0) ← d(um+n . . .u1u0)
6: end if
7: Now determine each digits.
8: for j = m . . .0 do
9: Get our estimate

10: q̂ ← (u j+nB +u j+n−1) \ vn−1

11: r̂ ← (u j+nB +u j+n−1) mod q̂vn−1

12: Refine if needed
13: while q̂ ≥ B ∨ (r̂ < B ∧ q̂vn−2 > Br̂ +u j+n−2) do
14: q̂ ← q̂ −1
15: r̂ ← r̂ + vn−1

16: end while
17: Do the substraction
18: b = 0
19: for i = 0. . .n −1 do
20: b ← u j+i − vi q̂ +b
21: u j+i ← b mod B
22: b ← b \ B
23: end for
24: If there is a borrow, that mean the refinement wasn’t enough to get it right, add back v and

adjust q̂ .
25: if b 6= 0 then
26: (u j+n−1 . . .u j+1u j) ← (u j+n−1 . . .u j+1u j)+ (vn−1 . . . v1v0)
27: q̂ ← q̂ −1
28: end if
29: q j ← q̂
30: end for
31: Finally undo the adjustment of the remainder
32: if d > 1 then
33: (un−1 . . .u1u0) ← (un−1 . . .u1u0) \ d .Use algorithm 3
34: end if

6

