
Exported Templates

Jean-Marc Bourguet

This is the manuscript I sent to the Overload editing team.
It has been in Overload 54 – April 2003. It has been
edited before publishing, at least to better suit the
publication style, probably to correct some spelling errors
as well.

Introduction
Exported templates is one of the two standard template compilation models. Exported
templates have been implemented first only very recently and during the time they where
defined but not available, they have been the subject of many expectations, some of them
unreasonnable and the consequence of confunding compilation models and instantiation
mechanisms.
After having reviewed the standard defined compilation models and the instantiation
mechanisms, we'll look at some related issues with template in C++ and see what can be
expected from export.

Template Compilation Models

According to [CPPTemplates],

The compilation model determines the meaning of a template at various
stages of the translation of a program. In particular, it determines what the
various constructs in a template mean when it is instanciated. Name
lookup is an essential ingredient of the compilation model of course.

Name lookup is an essential ingredent of the compilation model, but the standard models
share their name lookup rules which are called the two phases lookup so it will be enough
for this article to state that names independant of the template parameters are searched in
the context of the definition of the template (that mean that only names visible from the
definition are found) while names dependant on the template parameters are searched in
both the definition and instantiation contexts (that mean that names visible from the place
where the instantiation is used may also be found). [CPPTemplates] provides a more
complete description, included more precise definition of what the definition and
instantiation contexts are.

It should be noted that while these name lookup rules where introduced in the -then draft-
standard in 1993, until 1997 all compilers looked up for dependant and independant
names only in the instanciation context; the first compilers which implemented the rules
found so many errors in programs that they had to output warnings instead of errors.

At the hearth of this article is another ingredient of the template compilation model: how
the definitions of non class template are found. At first, this part of the compilation
model was not clearly specified. For example, Bjarne Stroustrup [CPPPL2] wrote:

When a function definition is needed for a class template member function
for a particular type, it is the implementation's job to find the template for
the member function and generate the appropriate version. An
implementation may require the programmer to help find template source
by following some convention.

CFront, which was the first implementation of C++ templates, used some conventions
which are described in the appendix. The standard provides two ways which both are
different of the one given by CFront.

The Inclusion Compilation Model

This is the only commonly provided compilation model: the definition of a template has
to be provided in the compilation unit where the template is instanciated1.

In an effort to be able to compile sources written for CFront, some compilers provide a
variant where the source file which would be used by CFront is automatically included
when needed.

The Separation Compilation Model

When using this model, template declarations have to be signaled exported2 (using the
keyword export). A definition of the template has to be compiled in one (and only one by
the one definition rule) compilation unit and the implementation has to manage with that.

It should be noted that while in the inclusion model the two contexts where names are
looked up are usually not very different (but remember the problems found by the first
implementation of two phases lookup), in this model the differences may be far more
important and give birth to some surprising consequences, especially in combinaison with
overloading and implicit conversions.

1While the standard requires that the definition is either available every compilation units
where the template is instanciated or exported, no compilers I know check this rule, they
all simply don't instantiate a template in a compilation unit where the definition is not
present and some take advantage of their behaviour.
2The standard seems to imply that only the definition has to be marked as exported, but
the only implementation demands that the declaration is marked and a defect report -the
mechanism to report and correct bugs in the standard- on this issue has been introduced to
demand it.

Template Instantiation Mechanisms

According to [CPPTemplates]3,

The instantiation mechanisms are the external mechanisms that allow C++
implementations to create instantiations correctly. These mechanisms may
be contrained by the requirements of the linker and other software building
tools.

One may consider that there are two kinds of instantiation mechanisms:

 local, where all the instantiations are done when considering each compilation unit,
 global, where the instantiations are done when considering all the compilation units in

the program or library.

CFront used a global mechanism: it tried a link and used the error messages describing
missing symbols to deduce the needed instantiation. It then generated them and retried
the link until all needed instantiations where found.

Borland's compiler introduced the local mechanism: it add all the instantiations needed by
them to every objects and then rely on the linker to remove duplicate.

Sun's compiler also use a local mechanism. It also generates all the needed instantations
when compiling a compilation unit, but instead of putting them in the object file, it put
them in a repository. The linker do not need to be able to remove duplicate and an
obvious optimisation is generating an instantiation only if it is not already present in the
repository.

Comeau's and HP's compilers have a global mechanism: they use a pre-linker to detect
the needed instantiations4. These are then assigned to compilation units who can generate
them and these compilation units are recompiled. The assignment is cached so that when
recompiling a compilation unit to which instantiations have been assigned, they are also
regenerated; the pre-linking phase is then usually simply a check that all the needed
instantiations are provided excepted when starting a compilation from a clean state.

Comeau's compiler has an additional mode where several objects are generated from a
compilation units to which instantiations have been assigned. This removes the need to
link a compilation unit (and so other compilation units to which it depends) only because
an instantiation have been assigned to it.

3The classification of instantiation mechanisms used in this book is different of the one
presented here. They use greedy instantiation and queried instantiation for what we call
local instantiation and use iterated instantiation class forglobal instantiation.
4Unlike CFront, they do not detect them by examining the missing symbols from a failed
link but use a more efficient mechanism.

Issues related to template instantiations

It should be noted that the compilation model and the instantiation mechanisms are
mostly independant: it is possible (not always conveniant nor especially usefull) to
implement the standard compilation models with each of the instantiation mechanisms
described. A consequence is that one should not expect the separation compilation model
to solve problems related to instantiation mechanisms.

Publishing the source code

The need in the inclusion model to provide the source code of the template definition is
seen by some as a problem. Is the separation model a solution?

First, it should be noted that formally the standard ignores such issues and so a compiler
could always demand that the source code be present until link time. Not going to such
extremities, some compilers allow to delay code generation until link time and so the
object files are at high level of description5.

Then it should be noted that a compiler could provides a way to accept encrypted source
or high level intermediate format (something very similar to what is done with
precompiled headers) and so if there is enough demand, the compiler makers can provide
a solution (not perfect but probably good enough for most purposes: it is used in other
languages; the main problem would probably be to generate usefull error messages when
encrypted code is all what is available) even with the inclusion model.

These remarks made, we'll consider the related but quite different question: can the
separation model be implemented in such a way that only low level information is needed
to instantiate templates?

The two phases lookup rules and other modifications made during the standardisation
allowed the compilers to check the template definition for syntactic errors, but most
semantic one can only be detected at instantiation time. Indeed, most operations done in
a template are dependant on the template parameters, and so knowing the parameters is
needed to get the precise meaning.

So it is obvious that the answer is no: the separation model may not prevent the need to
fournish the template definition as an high level description.

5I'll consider an intermediate format as high level if the source code without the comment
can be reconstructed; an intermediate format which is not high level will be qualified of
low level. Obviously in practice the separation between low level and high level is not
clear.

Compilation time

Templates are often blamed for large compilation time. Is this attribution meaningfull?

Concerning the compilation model, in the inclusion model, every compilation units using
template has to include the definition of templates and so everything needed for the
definition. So more code is to be read and parsed than for the export model, but some
techniques such as precompiler headers can reduce the overhead.

The separation model does not have obvious overhead in forcing doing redundant work
even if the current implementation force a reparsing of the definition for each
instantiation.

The main overhead of the global instantiation mechanisms is in the way the needed
instantiations are detected. CFront's way of trying links until closure was costly. More
modern methods such those of HP and Comeau are less costly. They still have the
disadvantage of increasing the link time of a clean build. The global mechanisms have
also an overhead in the recompilation of the compilation units to which instantiations
have been assigned. Anew, this overhead exists only when doing a clean build.

There is a serious overhead in the local mechanism without using a repository: the
instantiations are compiled several times, and the optimisation and code generation
phases of a compiler usually do take a significant part of the process. Doing them to
throw the result away after is a waste. Especially that it makes bigger files and
complicates and slows down of the linker.

Recompilation

In this section, we'll examine what recompilations are needed when a file is modified, and
if the recompilation can be automatically done.

When modifying a type used as a template argument, all the files using this type should
be recompiled and the compilation model has no influence on that.

The normal use of makefiles6 allows to trigger the recompilation in all combinations of
compilation models and instantiation mecanisms.

When modifying a template definition, the things are sensibly different.

With the inclusion model, the normal use of makefiles trigger a recompilation of all
compilation units including the definition of the template and so the needed instantiation
will be recompiled whatever the compilation model is used.

6That is where dependancies are generated by the preprocessor (with an option like the
-MM of gcc) or an external tool (like makedepend)

With the separate model, the normal use of makefiles will trigger a recompilation of the
compilation unit providing the exported definition and a relinking. Is this enought?

When using a local mechanism, all compilation unit using the template should be
recompiled, so additionnal dependancies should be added to the makefile. In practice, a
tool aware of exported template should be used to generated the dependancies in the
makefile.

When using a global mechanism, the pre-link phase should be able to trigger the needed
recompilation: it only need to be able to detect that the instantations are out of date,
beeing able to launch recompilations is inherent to this mechanism. Exported template
provides a natural way to trigger the pre-link phase and to allows it to check the
consistency of the objects.

What happen when a definition becomes available late?

When a definition becomes available when it was previously not, the used instantiations
need to be provided. That can be considered as a modification of a stub definition and the
needed recompilations would be the same.

What expect from export?

Compared to the inclusion model, what are the expected effects of using the separate
model?

 It removes the need of providing the definition of the function templates along with
the declaration. This mimick what is true for normal functions and a behaviour
expected by most people starting to use templates.

 It removes also the need to include all the declarations needed by the definition of the
function templates, preventing a ``polution'' of the user code.

The other effects are dependant on the instantiation mechanism used.

 in conjonction with a local mechanism without duplicate instantiation avoidance (like
Borland's), it could need more parsing than the inclusion model as the headers needed
for both the definition and the declarations have to be parsed twice if one requires the
definition to be available at instantiation time (as does the only implementation).

 in conjonction with a local mechanism with duplicate instantiation avoidance (like

Sun's), it could reduce the needed file reading and parsing, but the disadvantage for the
inclusion model may be reduced by using techniques such as precompiled headers

 in conjonction with a global mechanism

 it reduce the needed file reading and parsing, but the disadvantage for the
inclusion model may be reduced by using techniques such as precompiled
headers

 it reduce the need of recompilations after a change in the template as only the

compilation units providing the instantiations have to be provided.

Experiment report

While I've not (yet?) true experience to report, I've made some experiments on exported
template using Comeau's compiler to check if they are usable (that is if it was possible to
set up makefiles so that all needed recompilations was trigered automatically without
adding dependancies manually, if it was possible to use them with libraries, if it was
possible to organize the code so that it could be compiled in both the inclusion model and
separation one, ...).

I also wanted to check if the expected effects on the instantiation mechanisms described
above where measurable. As Comeau's compiler provides a global mechanism, I
expected a reduction in compile time the reduction in file reading and parsing and I
wanted to see how it did compare with what can be optained with pre-compiled headers.

Obviously such effect depend on the code. The simple setup I used was designed to be
favourable to export: a project made of a simple template function making use of the
standard IOStream in its implementation but not in the interface was instantiated for the
same argument in ten files containing very little else. In such setup if export do not
provide a speed up in compilation time, there is little hope that it will in real life projects.

I measured
 the time to build from scratch
 the time to rebuild after touching the template definition file
 the time to rebuild after touching the header defining the template argument type

for kind of compilation7:
 normal compilation
 using precompiled headers
 using export

The result are available in this table:
Normal build Precompiled headers Exported template

From scratch 10.2 5.2 3.7
Touching the type
definition 9.4 4.7 2.5

7I tried also to measure it for the combination of export and precompiled headers but
triggered a bug in Comeau's compiler.

Normal build Precompiled headers Exported template
Touching the template
definition 9.3 4.7 2

One see that at least for this kind of use, exported template has some benefit in built time.
This is especially true when modifying the template definition (which for exported
template resulted in one file compilation and a link while there where several file
compilation for the normal build and when using precompiled headers), but the effect of
reduced parsing can be see when the same instantiation is used in several files and when
the use of export reduce the need of include (in the experiement: the <iostream>
and <ostream> headers where only needed in the template definition).

Obviously, in more realistic set ups, the proportion of the timing reduction would be
different and using export could result in degradation of building time when template
instantiation are used in only one compilation unit or when the usage of export does not
reduce the need of including files.

CFront compilation model and instantiation mechanism8

When instanciating templates, CFront compiled-in a special mode to ensure that only
template instanciations were provided-a new compilation unit made up of
 the file containing the template declaration,
 a file expected to contain the template definition whose name was made up by

changing the extension of the file containing the declaration,
 a selection of files included in the file which requested the template instantiation,
 special code triggering the wanted instantiations.

A name (dependant or independant) used in a template, was searched in the context of
instantiation in this compilation unit, this context was different but usually very similar to
the context at the true instantiation point.

CFront compiled template instantiations at link time. A pre-linker launched a link,
deduced the needed instantiations from the missing symbols and generated them if they
where not already present in a repository. Then it restarted the process until all needed
instantiations where available. The behaviour of CFront was reputed to be slow (linking
takes a lot of time and doing several of them takes even more so) and fragile (needed
recompilation of instantiations sometimes did not occur and so the first step in handling a
strange error was to clean the repository and recompile everything).

Bibliography

CPPPL2, Bjarne Stroustrup, The C++ programming language, Addison-Wesley,

8I've never used CFront, so this descriptionis not from a first hand experience but is the
summary of informations found at different places.

second edition, 1991

CPPTemplates, David Vandevoorde and Nicolai M. Josittis, C++ Templates, The
Complete Guide, Addison-Wesley, 2003

Herb Sutter, ``export'' restrictions, part 1, in C/C++ Users Journal, September 2002,
Also available at http://www.gotw.ca/publications/mill23.htm.

Herb Sutter, ``export'' restrictions, part 2, in C/C++ Users Journal, November 2002,
Also available at http://www.gotw.ca/publications/mill24.htm.

